翻訳と辞書 |
Pareigis Hopf algebra : ウィキペディア英語版 | Pareigis Hopf algebra In algebra, the Pareigis Hopf algebra is the Hopf algebra over a field ''k'' whose left comodules are essentially the same as complexes over ''k'', in the sense that the corresponding monoidal categories are isomorphic. It was introduced by as a natural example of a Hopf algebra that is neither commutative nor cocommutative. ==Construction==
As an algebra over ''k'', the Pareigis algebra is generated by elements ''x'',''y'', 1/''y'', with the relations ''xy'' + ''yx'' = ''x''2 = 0. The coproduct takes ''x'' to ''x''⊗1 + (1/''y'')⊗''x'' and ''y'' to ''y''⊗''y'', and the counit takes ''x'' to 0 and ''y'' to 1. The antipode takes ''x'' to ''xy'' and ''y'' to its inverse and has order 4.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Pareigis Hopf algebra」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|